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Abstract

This paper proposed an image compression-encryption scheme based on compressive
sensing theory, which achieves high security, strong robustness, and high rate-distortion
performance. First, the denoising preprocessing strategy is applied at the encoder side,
which can enhance the rate-distortion performance without sacrificing security and robust-
ness. Second, the preprocessed image is randomly down-sampled using scrambled block
Bernoulli sampling with diffusion noise (SBBS-DN), which is generated by combining a
hyper-chaotic system and SHA256 hash of the plain image. Third, a deep-learned plug-
and-play is embedded prior for plain image reconstruction at the decoder side. Simulation
results show that the proposed scheme has desirable security performance (being resis-
tant to different attacks), high R-D performance (PSNR gains over 1.3 dB than JPEG at
0.50 bpp compression ratio), and high error resilience (reconstructed 29.92 dB at 0.50 bpp
compression ratio even with 50% bit loss).

1 INTRODUCTION

As information technology progresses, a large number of
digital images are generated, transmitted, and stored. Trans-
mitting digital images is vulnerable to privacy issues such as
information leakage and data tampering. Thus, such explosive
increasing demand in image communication desires effective
privacy-preserving techniques to ensure data security during
transmission [1].

Many image encryption algorithms have been developed with
various techniques, such as bit-level permutation [2–4], one-
time keys [5–7], DNA rule [8–10], logistic map [11–13], and so
on. For instance, Dou et al. [4] explored bit-level permutation
within the discrete wavelet transform domain to improve the
security of encrypted images. Rehman et al. [5] performed image
encryption by utilizing one-time keys and the pseudo-rotor sub-
stitution machine. Farah et al. [8] proposed an optical image
encryption scheme that combines fractional Fourier transform
and DNA sequence operation. Zhou et al. [11] proposed an
image encryption scheme by combining the logistic map and
sine map. However, these image encryption schemes do not
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take into account the rate-distortion performance. Besides,
these encryption schemes are not sufficiently resistant to bit
error or bit loss in transmission. Error or loss of a few bits
in traditional image coding schemes would result in incorrect
image reconstruction.

Compressive sensing (CS) is an emerging light-weight and
robust image coding scheme, where image compression and
encryption can be realized simultaneously [14, 15]. In the
CS measurement process, a meaningful plain image is trans-
formed into a noise-like cipher image with a high level of
confidentiality guarantee [16]. The secrecy of the CS-based
image coding scheme has been formally analyzed in [17, 18],
proving the adequate computational security of CS to resist
common attacks.

Except for the outstanding privacy-preserving property, CS-
based encryption schemes have another two advantages over
traditional image compression schemes [19]. First, CS has an
easily implemented encoder that requires a little computing
resource. Only a simple randomly down-sampled operation is
needed for data compression. Second, it is robust to bit error or
loss in transmission. The CS measurements are the democracy
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descriptions of the original signal, which makes the encrypted
bitstream robust both in the binary erasure channel and binary
symmetric channel.

CS-based image encryption schemes have been intensively
investigated in recent years. For instance, Zhou et al. [20] pro-
posed a CS-based image encryption scheme by combining co-
sparse representations, random pixel exchanging, and discrete
fractional angular transformation. Chai et al. [21] introduced
a CS-based image encryption scheme using the memristive
chaotic system, elementary cellular automata. Zhang et al. [22]
embedded orthogonal-basis CS measurement matrics into ran-
dom phase encoding, which can compress multiple images
parallelly into stochastic noise-like signals. Chen et al. [23] intro-
duced scrambled block random sampling for CS-based image
coding together with a patch-based CS reconstruction algo-
rithm. However, all these CS-based image encryption schemes
still suffer from poor rate-distortion performance (close to
or lower than JPEG), which limits their widespread use in
image transmission.

To address the rate-distortion performance gap meanwhile
ensuring high security and strong robustness, this work pro-
poses an image compression-encryption scheme by combining
scrambled block Bernoulli sampling with diffusion noise, dilated
residual channel attention network (DRCAN) prior, and pre-
processing strategy. We conducted extensive experiments to
demonstrate our performance in compression, encryption, and
robustness performance. Experimental results show that the
proposed CS-based coding scheme has convincing security per-
formance (passing all 17 NIST tests and being resistant to
differential attack), high R-D performance (PSNR gains over
1.3 dB than JPEG at 0.50 bpp compression ratio), and high
error resilience (reconstructed 29.92 dB even with bit loss
probability 50% at 0.50 bpp compression ratio). The main
contributions of this paper are summarized as follows:

First, we design a simple but efficient scrambled block
Bernoulli sampling with diffusion noise to encrypt the origi-
nal image.

Second, we embed a state-of-the-art deep-learned plug-and-
play prior for plain image reconstruction.

Third, we introduce a denoiser to preprocess the original
image at the encoder side.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background of CS measurement and CS
reconstruction algorithms. Section 3 illustrates an overview of
the proposed scheme. The details of the proposed CS encryp-
tion process are presented in Section 4. Section 5 introduces the
deep-learned plug-and-play prior used for image recovery. The
CS preprocessing strategy is presented in Section 6, followed by
experimental results in Section 7. Section 8 offers conclusions.

2 BACKGROUND

2.1 CS measurement for image encryption

Compressive sensing states that a sparse or compressible sig-
nal x ∈ Rn can be accurately reconstructed from its m random

linear measurement results y ∈ Rm , that is,

y = Φx, (1)

where Φ ∈ Rm×n(m << n) is the CS measurement matrix [24].
The measurement matrix Φ is related to the encryption effect,
encoding complexity, and reconstruction performance.

One well-designed measurement matrix should satisfy the
restricted isometric property for CS as well as the secu-
rity requirements of uncertainty, unpredictability, and non-
repeatability [25]. Although a completely random matrix can
offer optimal image reconstruction performance, it suffers from
high computational complexity, huge storage, and low efficiency
in practical implementations.

Block-based measurement matrix generated from the Chaos
system offers an effective alternative way for CS-based image
encryption [26]. A simple recurrence chaos equation can pro-
duce complex sequences from initial values and a slightly
disturbed initial value can generate a completely different mea-
surement matrix. Therefore, it only needs to save and transmit
initial values instead of the entire measurement matrix, which
can save storage and bandwidth.

2.2 CS reconstruction for image decryption

Since CS reconstruction is an ill-posed inverse problem, it
requires some prior knowledge to constrain the solution
space [27, 28]. CS enables the reconstruction of an image by
solving the following unconstrained optimization problem

x = arg min
x

‖ỹ − Φx‖ + 𝜆R(x ), (2)

where ‖ỹ − Φx‖ is the fidelity term, R(x ) is the regularization
term, and 𝜆 is an appropriate regularisation parameter.

Based on the type of regularization R(⋅), the CS recon-
struction algorithm can be mainly classified into hand-crafted
algorithms and deep-learned algorithms. The popular hand-
crafted regularization terms usually involve some manually
chosen parameters, which are hard to determine. Deep-learned
prior can be implicitly defined by replacing some compo-
nents in hand-crafted prior algorithms with plug-and-play
deep neural networks [29]. For instance, ISTANet replaces
the soft-thresholding step in the traditional iterative soft-
thresholding algorithm with a learning-based threshold oper-
ator [30]. LDAMP uses a convolutional neural network to
realize the image denoising step in D-AMP algorithms [31].
Here, we embed a tailored DRCAN prior to the image
decryption at the decoder side, which can improve the R-D
performance fundamentally.

3 OVERVIEW OF THE PROPOSED
SCHEME

The diagram of the proposed CS-based compression-
encryption scheme is shown in Figure 1. At the encoder
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1480 CHEN ET AL.

FIGURE 1 Architecture of the proposed CS compression-encryption scheme

side, we first adopt a deep-learned denoiser to preprocess
the input plain image. Then, we utilize the scrambled block
Bernoulli sampling with diffusion noise (SBBS-DN) to measure
the preprocessed plain image. The overall image encoding
process can be expressed as

Cipher = mod(Qb(ΦD(x )) + 𝜂, 2b ), (3)

where Φ, 𝜂, Qb(⋅), and D(⋅) refer to the SBBS matrix, diffusion
noise, b-bit quantizer, and preprocessing operation. Specifically,
the SBBS matrix is composed of block measurement matrix
W and pixel scrambling matrix P , which are generated based
on the logistic map and hyper-chaos map, respectively, and the
diffusion noise 𝜂 is generated by a recurrent procedure com-
bining SHA256 and the logistic map. Thus, we can synchronize
and generate the measurement process on both the encoder
side and the decoder side by transmitting only six secret keys
{k0

1, k
0
2, k

0
3, k

0
4, k

0
5, k

0
6}.

The decoder can synthesize the same CS measurement matrix
as the encoder uses if receiving the correct secret keys. Then, the
decoder exploits the designed DRCAN as a plug-and-play prior
to the reconstruction of plain images. The overall decoding
process can be expressed as

x̃ = CS−1(Q−1
b

(mod(Cipher − j, 2b ))), (4)

where CS−1(⋅) and Q−1(⋅) refer to the applied CS reconstruc-
tion algorithm and b-bit inverse-quantizer. In the following
sections, we will give more details on the above main parts of the
proposed compression-encryption schemes, that is, the chaotic
system to create the SBBS-DN, the deep-learned prior for CS
reconstruction, and the denoising preprocessing strategy.

4 SBBS-DN FOR IMAGE
COMPRESSION-ENCRYPTION

The proposed compression-encryption encoder is based on
the construction of the measurement matrix Φ and diffusion

noise 𝜂. To simplify the encoding complexity, we split the CS
measurement matrix Φ into a product of two matrices

Φ = WP , (5)

where P ∈ Rn×n is a sparse matrix with only one ′1′ per column
and row, and W ∈ Rm×n is a block diagonal

W =

⎡⎢⎢⎣
WB 0

⋱

0 WB

⎤⎥⎥⎦ . (6)

Specifically, we take a ⌊mB

n
⌋ × B size partial Bernoulli matrix as

WB , in which all elements are either +1 or −1 with 50% prob-
ability. In this way, the designed SBBS-DN only requires pixel
permutation operation and add/sub-operation, which is simple
to run.

4.1 From the input image to the chaotic
sequence

The proposed chaotic system applies three independent chaotic
maps to generate chaotic sequences for the corresponding
measurement matrices and diffusion noise, that is,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k̇1 = a(k2 − k1) + k4

k̇2 = ck1 − k1k3 − k2

k̇3 = k1k2 − bk3

k̇4 = dk4 − k2k3

k̇5 = (e − 1)k5 − ek2
5

k̇6 = ( f − 1)k6 − fk2
6

, (7)

where the first four equations are the hyper-chaotic Lorenz sys-
tem, and the last two equations are two independent logistic
systems. In the system, we use the Runge–Kutta method with
a suitable step length to solve the first four ordinary differential
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CHEN ET AL. 1481

equations (ODE) and utilize the Euler method with a fixed step
length to solve the last two ODE. In this way, our encryption
system can generate six pseudo-random sequences {ki

1}, … , {k
i
6}

with the initial conditions {k0
1, … , k

0
6}.

Furthermore, we use the SHA256 result of the input image as
the initial value for the applied chaotic system. Considering that
Equation (7) requires six initial values and the SHA256 function
outputs 256 bits each time, we pick the first 192 bits to form six
32-bit depth values and then de-quantize these 32-bit depth val-
ues uniformly into the prescribed interval of the chaotic system
(i.e. k0

1 ∈ (1, 81), k0
2 ∈ (−250, 250), k0

3 ∈ (0, 0.5), k0
4 ∈ (0, 0.5),

k0
5 ∈ (−40, 40), k0

6 ∈ (−40, 40)).

4.2 From the chaotic sequence to SBBS-DN

For the pixel scrambling matrix P , we first construct a new
sequence {ki

∗} by utilizing the first four generated chaotic
random sequences

ki
∗ =

⎧⎪⎨⎪⎩
ki

1 −
⌊
ki

1

⌋
if mod

(⌊
ki

4 × 106
⌋
, 3
)
= 0

ki
2 −

⌊
ki

2

⌋
if mod

(⌊
ki

4 × 106
⌋
, 3
)
= 1

ki
3 −

⌊
ki

3

⌋
if mod

(⌊
ki

4 × 106
⌋
, 3
)
= 2

, (8)

where mod (⋅) is the modulo operation and ⌊⋅⌋ is the oper-
ation rounding value toward zero. Afterward, we sort {ki

∗} in
descending order and retrieve the index sequence, denoted as
I∗ = {I1, … , In}. The scrambled matrix P ∈ Rn×n can then be
obtained by setting the element at position (i, j ) as follows

P (i, j ) =

{
1 if j = Ii

0 if j ≠ Ii

. (9)

For the Bernoulli matrix WB , we utilize the chaotic sequence
{ki

5} to determine whether the element at position (i, j ) is 0 or
1, that is,

WB (i, j ) =

{
+1 if k

i×B+ j

5 > 0.5

−1 if k
i×B+ j

5 ≤ 0.5
. (10)

For diffusion noise 𝜂, we first uniformly quantize the chaotic
sequence {ki

6} to 8-bit depth integer values ranging from 0 to
255. Then, we add the quantized chaotic sequences with the
corresponding SHA256 results, that is,

𝜂 = Q({ki
6}) + SHA256(Q({ki

6})), (11)

where we produce the SHA256 results of Q({ki
6}) by splitting

Q({ki
6}) into the sub-sequence of length 32 and importing each

of the sub-sequence into the SHA256 function.
Through the above system, both the encoder and the decoder

can generate the SBBS-DN from the six initial values. Because
outputs of the chaotic system are extremely sensitive to the ini-
tial values, a slight disturbance of the initial values (or the input

image) would cause a huge difference in the generated measure-
ment matrix, which makes the cipher image difficult to crack
through the differential attack.

5 DRCAN PRIOR FOR IMAGE
RECONSTRUCTION

In the practical application, cipher images are packaged and
transmitted to the decoder side. If having the correct secret keys,
the decoder can synthesize the accurate measurement matrix
Φ and diffusion noise 𝜂. Then, the decoder can yield the CS
measurement ỹ from the received cipher image

ỹ = Q−1
b

(mod(Cipher − 𝜂, 2b )). (12)

In this work, we utilize the proximal momentum gradient
descent algorithm to reconstruct the plain image from ỹ by
alternating between the gradient descent step and the proximal
operating step

vk = ΦT(Φxk − ỹ) + 𝛾k−1vk−1, (13)

xk+1 = D(xk − 𝛼vk ), (14)

𝛾k =
𝜀T(D(xk − 𝛼vk + 𝜀) − xk+1)

m
, (15)

where 𝛼 is the step size, 𝜀 is a standard normal random vec-
tor, and D is the proximal operator for regularization term
R. This splitting approach is an efficient CS reconstruction
framework to exploit the plug-and-play prior [31, 32]. We set
the initial guess x0 as zero and step size 𝛼 as 1. By iterat-
ing from Equations (13) to (15), we can obtain the final CS
reconstructed image.

In this work, we utilize a dilated residual channel attention
network (DRCAN) as the proximal operator D(⋅) (see Figure 2)
for CS image reconstruction [33]. DRCAN mainly composes
two residual channel attention blocks (dilated RCAB), which
compose eight stacked dilated channel attention layers (dilated
CAL). The relative dilation factors in each dilated CALs are
set to (1,2,3,4,4,3,2,1), which can expand the capacity of the
receptive field.

6 IMAGE PREPROCESSING STRATEGY

One strategy to improve CS reconstruction performance is
to measure the preprocessed image (i.e. ΦD(x )) instead of
the original one (i.e. Φx). Such CS preprocessing strategy
has been proved to be substantially equivalent to revising
the CS regularization term with a linear approximation [34].
Consequently, the preprocessing operator should correspond
to the regularization used for the CS reconstruction. For
instance, [35] adopts the sparse-filtering preprocessing to
enhance wavelet sparse regularization, and [36] adopts col-
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1482 CHEN ET AL.

FIGURE 2 The architecture of the designed dilated residual channel attention network for proximal operator D(⋅)

FIGURE 3 Test images. From left to right, the test images are Barbara, Boats, Cameraman, Foreman, House, Lena, Monarch, and Parrots

laboration reduced rank preprocessing to enhance low-rank
regularization. Specifically, D(⋅) is the residual channel atten-
tion network used as the proximal operator at the decoder
side. Such denoising preprocessing strategy can improve
the rate-distortion performance, meanwhile maintaining the
encryption and robustness properties of the CS-based coding
scheme.

7 EXPERIMENTAL RESULTS

To verify the performance of the proposed image compression-
encryption scheme, we conducted extensive simulations. The
measurement block size B in Equation (5) is set as 32. The
parameters in Equation (7) are set as a = 10, b = 8∕3, c =

28, d = −1, e = 4, and f = 4. As shown in Figure 3, eight
256 × 256 size images are used for the testing. We used
DIV2K [37] as the training dataset to train the proximal
operator D(⋅). Note that all test images are not included
in the training dataset, and all PSNR results are com-
puted between the reconstructed and the original (not the
pre-processed) images.

7.1 Encrypted and decrypted image

The encrypted images have different sizes depending on the
compression ratio (CR), that is,

CR =
m × b

n
, (16)

where m is the number of CS measurement; n is the pixel num-
ber of the original image; b is the quantization bit depth for each
CS measurement; and units are bits per pixel (bpp). The height
and width of the cipher image are equal to the number of CS
measurement blocks, that is,

n

B
, and the number of CS measure-

ments in each block, that is, ⌊mB

n
⌋, respectively. Here, we fix the

quantization bit depth as 7 and control the compression ratio by
adjusting m.

Figure 4 shows encoded images and decoded images of
Lena and Parrots corresponding to CR = 0.25, 0.50, 0.75,
and 1.00 bpp, respectively. We further compute peak signal
noise ratio (PSNR)to evaluate the quality of the decrypted
images. It can be seen that all ciphertexts are similar to white
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CHEN ET AL. 1483

FIGURE 4 Visualization of encrypted and decrypted test images with the proposed CS compression-encryption scheme

noise, without leaking any visual perception of the original
images, and the decrypted images can achieve acceptable recon-
struction visual quality even at a low compression ratio of
0.25 bpp.

7.2 Compression performance

We compare the proposed method with three popular tra-
ditional image compression standards, that is, JPEG [38],
CCSDS-IDC [39], and JPEG2K [40], which do not have the
image encryption capacity. Their order of R-D performance and
encoding complexity from low to high is JPEG, CCSDS-IDC,
and JPEG2K. Besides, we test the R-D performance of some
CS-based image encryption schemes, which utilize BM3D [41],
NLR [42], LDAMP [31], ISTANet [30], OPINENet [43], and
AMPNet [44] for reconstruction, and lagrangian interpolation
(LIP) [45] and DNA rule [46] for encryption. The PSNR results
of the test images with different image coding schemes are listed
in Table 1.

Comparing the first six columns and the last columns of
Table 1, we can see that the designed DRCAN prior can signif-
icantly improve the R-D performance of the CS-based coding
scheme. The results achieve 2.28 and 1.57 dB gains over LIP-
NLR and LIP-LDAMP at the compression ratio of 0.50 bpp.
Comparing the last four columns of Table 1, we can see that
the proposed scheme can outperform JPEG and approach
the performance of JPEG2K at low compression ratios. The
average reconstructed PSNR of the proposed scheme is, respec-
tively, 3.01 and 0.52 dB higher than JPEG and CCSDS-IDC,
and is only 0.26 dB lower than JPEG2K. Considering that

the encoding process of the proposed scheme does not utilize
entropy coding or other technologies to eliminate the redun-
dancy among the measurements, the R-D performance of our
scheme can be further improved.

Besides the PSNR metric, we also give the visual quality of
the competing schemes. Figure 5 presents the parts of recon-
structed images, in which the zoomed portions show that the
proposed scheme can restore more sharp details with fewer arti-
facts. All these testing results indicate that our method achieves
positive reconstruction performance both in quantitative and
perceptual terms.

7.3 Encryption performance

7.3.1 Key space and key sensitivity analysis

To resist brute-force attacks, the key space should be larger than
2100 [47]. In the proposed scheme, six initial values in Equa-
tion (7), that is, k0

1, … , k
0
6, are regarded as the secret keys in the

encryption process. Six 32-bit depth secret keys are generated
from the SHA256 result of the input plain image. Therefore, the
overall key space size S is (232)6, which means that the proposed
scheme is resistant to brute-force attacks.

Also, an efficient encryption scheme should be highly sensi-
tive to secret keys and plaintext. We test the key and plaintext
sensitivity of the proposed scheme. Taking C(⋅) as the encryp-
tion encoder, we evaluate the key and plaintext sensitivity
quantitatively using root mean square error (RMSE) as follows:

Ski
= ‖C(x, k + Δki ) − C(x, k)‖2∕

√
m, (17)
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1484 CHEN ET AL.

TABLE 1 PSNR(dB) results for different image coding schemes

Methods

Images Bpp

LIP

-BM3D LIP -NLR

LIP

-LDAMP

DNA

-ISTANet

DNA -

OPINENet

DNA

-AMPNet JPEG2K

CCSDS-

IDC JPEG Proposed

Barbara 0.25 24.57 22.06 23.07 21.17 22.96 23.78 27.26 25.43 23.86 26.01

0.50 28.62 27.22 25.20 23.43 24.35 24.51 31.56 30.10 27.69 28.75

0.75 31.00 31.08 27.89 23.49 24.70 24.73 34.33 32.85 31.08 31.26

1.00 32.47 32.33 29.99 24.93 27.27 28.47 36.74 34.76 33.49 33.00

Boats 0.25 22.66 23.09 26.30 23.25 26.52 27.60 28.32 27.87 25.23 27.99

0.50 29.52 28.77 29.45 27.04 29.53 29.65 32.88 31.56 30.21 31.66

0.75 31.54 31.60 32.11 27.24 30.81 30.60 35.99 34.87 32.93 33.26

1.00 32.95 33.16 33.12 29.01 33.08 31.38 38.05 36.60 35.06 34.77

Cameraman 0.25 24.94 21.65 27.11 20.48 23.46 24.17 27.32 26.78 25.03 28.20

0.50 28.38 27.58 29.30 23.37 26.34 26.36 31.00 30.48 28.59 30.52

0.75 29.45 28.69 30.26 23.46 26.83 26.80 33.92 33.09 30.83 31.42

1.00 30.27 29.32 31.55 25.12 29.29 29.57 36.47 35.04 32.63 32.41

Foreman 0.25 31.30 30.16 32.14 26.37 27.19 32.37 34.33 33.76 30.47 33.08

0.50 34.68 34.17 34.70 31.83 32.01 32.60 38.21 37.16 35.23 35.36

0.75 36.17 36.29 36.46 32.69 36.13 35.06 40.77 39.71 37.30 36.73

1.00 36.97 37.28 37.41 32.78 36.20 35.28 42.65 40.98 39.00 37.59

House 0.25 28.29 28.30 31.86 24.80 28.06 30.43 33.09 32.25 29.90 32.88

0.50 34.25 33.48 34.23 29.70 31.58 32.43 36.12 35.60 34.59 34.68

0.75 35.46 35.40 35.41 30.11 33.78 33.90 39.02 37.04 36.49 35.66

1.00 36.40 36.26 36.00 31.43 34.99 35.52 40.97 39.51 38.20 36.60

Lena 0.25 24.20 24.29 27.36 23.21 26.19 27.14 29.10 28.69 25.41 28.82

0.50 29.52 29.35 30.33 27.19 29.09 29.14 33.32 32.52 30.32 32.27

0.75 31.57 32.24 32.98 27.42 29.96 29.80 36.57 35.54 32.75 33.95

1.00 33.16 33.80 34.15 28.66 32.47 32.35 39.13 37.84 34.80 35.34

Monarch 0.25 19.87 20.00 25.05 20.17 24.80 25.92 25.70 24.98 22.89 27.12

0.50 26.91 27.14 28.90 25.37 28.93 29.02 29.84 29.21 27.33 30.51

0.75 29.03 29.40 30.92 25.58 29.86 29.65 33.06 31.89 29.90 32.41

1.00 30.38 30.86 32.71 27.10 32.65 33.72 35.62 34.72 31.68 34.06

Parrots 0.25 27.67 25.19 29.35 22.12 24.35 25.97 31.46 30.55 27.62 30.42

0.50 31.66 31.31 32.62 26.01 28.34 28.47 35.85 35.40 32.48 33.50

0.75 33.36 33.60 34.20 26.18 29.27 29.15 38.67 37.49 35.00 35.02

1.00 34.56 34.84 35.42 28.03 31.81 32.09 40.81 39.68 36.87 36.07

Average 0.25 25.44 24.34 27.78 22.70 25.44 27.17 29.57 28.79 26.30 29.31

0.50 30.44 29.88 30.59 26.74 28.77 29.02 33.60 32.75 30.80 32.16

0.75 32.20 32.29 32.53 27.02 30.17 29.96 36.54 35.31 33.29 33.71

1.00 33.40 33.48 33.79 28.38 32.22 32.30 38.81 37.39 35.22 34.98

Sx = ‖C(x + Δx, k) − C(x, k)‖2∕
√

m, (18)

where x + Δx represents only adding 1 to a random pixel of
plain image x, and k + Δki represents only disturbing the ith
element of secret keys with 𝜖 = 2−32. From Table 2, we can see
that the value of the cipher image changes dramatically with a
small disturbance. Figure 6 qualitatively illustrates the decrypted
boats, from which we can see that the decrypted images with

wrong secret keys cannot provide any perceptive information.
A slight modification of secret keys leads to a wrong image that
provides no perceptive information.

7.3.2 Correlation of adjacent pixels

For a meaningful plain image, the value of correlation coeffi-
cients is close to one, whereas for a cipher image, the value
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CHEN ET AL. 1485

FIGURE 5 Reconstructed Cameraman at 0.25 bpp. (a) LIP-BM3D; (b) LIP-NLR; (c) LIP-LDAMP; (d) DNA-ISTANet; (e) DNA-OPINENet; (f)
DNA-AMPNet; (g) JPEG2K; (h) CCSDS-IDC; (i) JPEG; (j) Proposed

TABLE 2 Key and plaintext sensitivity of the proposed encryption
scheme for different test images

Images Sx Sk1
Sk2

Sk3
Sk4

Sk5
Sk6

Barbara 33.51 12.56 12.56 12.52 12.53 32.67 33.19

Boats 34.17 12.11 12.09 12.10 12.08 33.62 33.18

Cameraman 35.42 15.10 15.05 15.10 15.08 32.88 32.84

Foreman 35.39 11.40 11.46 11.47 11.38 33.35 33.93

House 28.68 10.46 10.50 10.40 10.44 31.96 34.02

Lena 33.68 11.61 11.66 11.64 11.65 33.44 32.06

Monarch 34.21 13.93 13.93 13.84 13.86 33.49 33.29

Parrots 34.62 13.79 13.81 13.75 13.76 33.60 33.87

Average 33.77 12.70 12.71 12.68 12.68 33.13 33.30

can be reduced close to zero by an efficient cryptosystem. Sup-
posing that x and y are the adjacent pixels of an image, the
correlation coefficient between x and y is calculated by the
following formula:

rxy =

∑N

i=1(xi − x̄ )(yi − ȳ)√∑N

i=1(xi − x̄ )2 ⋅
∑N

i=1(yi − ȳ)2

, (19)

where x̄ =
1

N

∑N

i=1 xi and ȳ =
1

N

∑N

i=1 yi . We randomly select
4000 pairs of adjacent pixels in horizontal, vertical, and
diagonal directions.

Table 3 gives the correlation coefficients of adjacent pixels
for the proposed scheme and two competing schemes, that is,
2DCS-ETC [48] and MRKCS [49]. 2DCS-ETC and MRKCS
are two CS-based image coding schemes, of which R-D per-
formance is lower than JPEG. From Table 3, we can see
that the correlation coefficients of the proposed scheme are

close to zero. Figure 7 further shows the pictorial represen-
tation of the distribution of the adjacent pixels in the plain
and cipher images in three directions for the test image Lena.
One can see that distributions of the plain image are similar to
linear-like areas, whilst distributions of the encrypted image are
random-like areas.

7.3.3 Histogram analysis

To show the distribution also display the normalized his-
tograms of plain and their respective cipher images. As shown in
Figure 8, it is clear that the histogram of cipher images is more
uniform than that of plain images. In addition, to quantitatively
evaluate the uniformity of the plain and cipher image, we further
calculate the variances of the histograms [50]

Var(x ) =
1

22b

2b∑
i=1

2b∑
j=1

1
2

(
pi − p j

)2
, (20)

where pi denotes the proportion of pixels with pixel value to be
i. Lower variances of histograms mean higher uniformity of the
of pixel values in an image, we images. Table 4 gives the vari-
ances of the histograms of the plain images and cipher images,
from which we can see that the histogram variance of the cipher
image is greatly reduced compared with that of the plain image.
Thus, the attackers cannot find any useful statistical data from
the cipher image.

7.3.4 Entropy analysis

The higher the information entropy of the data, the more unpre-
dictable and random the data are. The information entropy is

 17519667, 2023, 5, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12731, W

iley O
nline L

ibrary on [09/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1486 CHEN ET AL.

FIGURE 6 Decrypted boats with different keys at 0.50 bpp compression ratio. Only one element of the secret keys deviates 𝜖 = 2−32 from the true key. (a)
original image; (b) correct keys; (c) k0

1 + 𝜖; (d) k0
2 + 𝜖; (e) k0

3 + 𝜖; (f) k0
4 + 𝜖; (g) k0

5 + 𝜖; (h) k0
6 + 𝜖

TABLE 3 Comparison of correlation coefficient of adjacent pixels in
cipher images

Image Vertical Horizontal Diagonal

Plain Image 0.9528 0.9688 0.9306

2DCS-ETC 0.25 bpp -0.0044 0.0296 -0.0096

0.50 bpp 0.0246 -0.0126 0.0118

0.75 bpp 0.0120 -0.0041 0.0013

1.00 bpp 0.0734 -0.0194 -0.0015

MRKCS 0.25 bpp 0.0243 0.0556 -0.0123

0.50 bpp 0.0268 0.0371 -0.0017

0.75 bpp 0.0378 0.1069 0.0057

1.00 bpp 0.0349 0.1000 -0.0087

Proposed 0.25 bpp -0.0156 -0.0080 0.0021

0.50 bpp -0.0091 -0.0145 0.0033

0.75 bpp -0.0102 -0.0093 0.0042

1.00 bpp -0.0119 0.0026 -0.0088

maximized when the data is uniformly distributed. We calcu-
late the residual from the entropy of images to the maximum
entropy as follows:

E(x ) =
2b∑

i=1

(
1
2b

log2 2b − pi log2
1
pi

)
= b −

2b∑
i=1

pi log2
1
pi
, (21)

where a smaller E(x ) means that the image x is more like a ran-
dom image with uniformly distributed pixel values. As shown
in Table 5, the residuals from the entropy of the cipher images
to the maximum entropy are much close to zero, demonstrating
the security of the method under entropy attacks.

7.3.5 Randomness analysis with NIST SP800-22

SP800-22 is a statistical test standard for validating the random-
ness of sequence published by American National Institution of
Standard and Technology (NIST) [51], which contains 17 dif-
ferent sub-tests measuring various distributional characteristics
of sequence. We subject 100 different cipher images to NIST
SP800-22, where we obtain different cipher images by chang-
ing one pixel of the plain image. As suggested by NIST, one
cipher is regarded as passing a sub-test of NIST SP800-22 if the
p-value is larger than 0.01. Table 6 presents the average cipher
p-value and passing proportion of each sub-test. We can see that
all passing proportions are higher than 0.96, which indicates that
our cipher images generated from the plain image has a high
randomness guarantee.

7.3.6 Differential attack

The differential attack aims to find a meaningful relation
between plain and cipher images by examining the impact of
modifications to plain images on cipher images. To evaluate
the resistance to the differential attack, we calculate the num-
ber of pixel changing rate (NPCR) and unified average changed
intensity (UACI) as follows

⎧⎪⎨⎪⎩
NPCR =

∑
i, j R(i, j )

m
,

R(i, j ) =

{
1, c1(i, j ) ≠ c2(i, j )

0, c1(i, j ) = c2(i, j ),

(22)

UACI =
1
m

[∑
i, j

||c1(i, j ) − c2(i, j )||
2b − 1

]
, (23)
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CHEN ET AL. 1487

FIGURE 7 Correlation analysis of test image Lena. The X and Y coordinates are the values of two pixels adjacent to each other in the horizontal, vertical, or
diagonal directions. Panels (a)–(c) refer to the horizontal, vertical, and diagonal correlation of plain image; (d)–(f) refer to the horizontal, vertical, and diagonal
correlation of cipher image

FIGURE 8 Normalized histogram of plain and cipher images. (a–d) The histograms of four plain images (Barbara, Foreman, House, and Monarch); (e–h) the
corresponding histograms of cipher images

where c1 and c2 are two cipher images before and after one pixel
of the plain image changed.

Suppose that c1 and c2 obey two independent random uni-
form distributions, then the expected NPCR and UACI metrics
can be, respectively, calculated as

NPCRexpected =
(

1 −
1
2b

)
, (24)

UACIexpected =
1

22b

⎛⎜⎜⎝
∑2b−1

i=1 (i + 1)i

2b − 1

⎞⎟⎟⎠ , (25)

from which NPCRexpected = 99.22% and UACIexpected =

33.59% for b = 7. Table 7 presents the NPCR and UACI met-

rics corresponding to the changes in four different positions of
the plain images. All NPCR and UACI results are quite close to
the expected values, which shows that the proposed scheme is
sensitive to the plain image.

7.3.7 Classical types of attacks

Ciphertext-only attacks, chosen-ciphertext attacks, known-
plaintext attacks, and chosen-plaintext attacks are four classic
types of attacks, of which the chosen-plaintext attack is the most
powerful one. If a cryptosystem can resist the chosen-plaintext
attack, it can resist other types [52–55].

We set the secret keys via the SHA256 function of the
plain image, resulting in different secret keys for different plain
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1488 CHEN ET AL.

TABLE 4 Variances of histograms for plain and cipher images

Images Barbara Boats Cameraman Foreman House Lena Monarch Parrots

Plain 6.93 × 10−6 2.38 × 10−5 2.58 × 10−5 3.20 × 10−5 7.00 × 10−5 9.43 × 10−6 9.36 × 10−6 1.66 × 10−5

Cipher 0.25 bpp 3.67 × 10−6 3.04 × 10−6 3.33 × 10−6 2.86 × 10−6 3.17 × 10−6 3.33 × 10−6 2.63 × 10−6 3.18 × 10−6

0.50 bpp 1.67 × 10−6 1.98 × 10−6 1.70 × 10−6 1.50 × 10−6 2.10 × 10−6 1.49 × 10−6 1.56 × 10−6 1.36 × 10−6

0.75 bpp 1.19 × 10−6 1.04 × 10−6 1.07 × 10−6 1.41 × 10−6 1.10 × 10−6 8.72 × 10−7 1.18 × 10−6 9.44 × 10−7

1.00 bpp 8.65 × 10−7 7.49 × 10−7 9.81 × 10−7 8.44 × 10−7 1.05 × 10−6 7.79 × 10−7 9.76 × 10−7 8.76 × 10−7

TABLE 5 Residuals from the entropy of images to the maximum entropy

Images Barbara Boats Cameraman Foreman House Lena Monarch Parrots

Plain 0.4748 0.8544 0.9903 0.9917 1.5070 0.5557 0.5284 0.5859

Cipher 0.25 bpp 0.0526 0.0489 0.0587 0.0427 0.0445 0.0403 0.0463 0.0485

0.50 bpp 0.0316 0.0252 0.0285 0.0269 0.0260 0.0288 0.0263 0.0227

0.75 bpp 0.0151 0.0149 0.0160 0.0164 0.0119 0.0123 0.0150 0.0122

1.00 bpp 0.0123 0.0100 0.0106 0.0117 0.0111 0.0123 0.0104 0.0125

TABLE 6 Cipher and Chaos results of NIST SP800-22 test suite

Statistical test

Passing

propor-

tion Cipher p-value Cipher results Chaos p-value Chaos results

Frequency 1.00 0.4816 SUCCESS 0.4651 SUCCESS

Block frequency (m = 20, 000) 1.00 0.4588 SUCCESS 0.3554 SUCCESS

Runs 0.98 0.4914 SUCCESS 0.4577 SUCCESS

Longest runs of ones 1.00 0.5149 SUCCESS 0.7867 SUCCESS

Rank 1.00 0.4929 SUCCESS 0.1536 SUCCESS

Spectral DFT 0.97 0.4951 SUCCESS 0.1692 SUCCESS

Non-overlapping templates (m = 9) 0.99 0.5086 SUCCESS 0.5110 SUCCESS

Overlapping templates (m = 9) 0.99 0.4910 SUCCESS 0.6712 SUCCESS

Maurers universal 1.00 0.4659 SUCCESS 0.3698 SUCCESS

Linear complexity (m = 500) 0.98 0.5161 SUCCESS 0.9502 SUCCESS

Serial p-value1(m = 16) 0.99 0.5046 SUCCESS 0.0751 SUCCESS

Serial p-value2(m = 16) 0.99 0.4899 SUCCESS 0.0830 SUCCESS

Approximate entropy (m = 10) 1.00 0.5174 SUCCESS 0.8817 SUCCESS

Cumulative sums (Forward) 1.00 0.4813 SUCCESS 0.7495 SUCCESS

Cumulative sums (Reverse) 1.00 0.4762 SUCCESS 0.3382 SUCCESS

Random excursions (x = −1) 0.98 0.5302 SUCCESS 0.6582 SUCCESS

Random excursions variant (x = −1) 0.98 0.4737 SUCCESS 0.1297 SUCCESS

images. Then, we take the secret keys as the initial values of
the chaotic maps to create measurement matrix Φ and diffusion
noise 𝜂. A slight change of the plain image would result in a
totally different measurement process (i.e. Equation (3)). Thus,
the cipher image of our scheme is heavily dependent on the
plain image and is resistant to known/chosen-plaintext attacks.

In some cases, attackers may use particular plain images, such
as all-black images and all-white images, to break down the

encryption scheme. Table 8 illustrates the residual from image
entropy to maximum entropy (Equation (21)) and correlation
coefficient (Equation (19)) of both all-black and all-white plain
images, from which we can see that both metrics are close to
zero, at the same level of the natural images. Useful information
cannot be obtained from the cipher images of all-black and
all-white plain images, indicating that the particular images
attack method cannot work.
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CHEN ET AL. 1489

TABLE 7 NPCR and UACI for different positions

Position of the changed pixel

Images Metrics (1,1) (100,200) (200,100) (256,256)

Barbara NPCR(%) 99.20 99.20 99.26 99.22

UACI(%) 33.65 33.66 33.60 33.63

Boats NPCR(%) 99.24 99.23 99.11 99.19

UACI(%) 33.56 33.67 33.09 33.44

Cameraman NPCR(%) 99.25 99.23 99.21 99.25

UACI(%) 33.73 33.61 33.65 33.67

Foreman NPCR(%) 99.19 99.26 99.12 99.22

UACI(%) 33.57 33.52 33.00 33.64

House NPCR(%) 99.21 99.21 99.22 99.21

UACI(%) 33.60 33.56 33.60 33.57

Lena NPCR(%) 99.16 99.09 99.23 99.22

UACI(%) 33.13 32.66 33.57 33.55

Monarch NPCR(%) 99.21 99.21 99.23 99.24

UACI(%) 33.63 33.55 33.61 33.72

Parrots NPCR(%) 99.22 99.22 99.20 99.22

UACI(%) 33.57 33.52 33.19 33.62

TABLE 8 Residual from the entropy of the cipher image to the maximum
entropy and correlation coefficient for all-black and all-white images

Correlation coefficients

Images Entropy residual Horizontal Vertical Diagonal

Cipher of all white 0.0097 -0.0033 -0.0033 0.0111

Cipher of all black 0.0099 -0.0094 0.0086 -0.0034

7.4 Robustness performance

The measurements are quantized into bits, which may be lost
or wrong during the process of transmission. In this section,
we evaluate the robustness of the proposed scheme under the
binary symmetric channel (BSC) and the binary erasure channel
(BEC). In BSC, a transmitted bit will be ‘flipped’ with a bit error
probability of PBSC, and in BEC, a transmitted bit will be not
received with a bit loss probability of PBEC.

The robustness is the most competitive advantage of the CS-
based image coding scheme. Traditional image coding schemes,
that is, JPEG, CCSDS-IDC, and JPEG2K, are sensitive to bit
error and bit loss. As shown in Figures 9 and 10, a low PBSC and
PBEC will cause the traditional image coding schemes unable to
reconstruct the entire image. On the contrary, some CS-based
image coding schemes can defend bit loss or bit error due to the
democracy of CS measurements. As shown in Figures 9 and 10,
the PSNR degradation of the proposed scheme is less sensitive
to the PBSC and PBEC. Although other CS-based image coding
schemes, including BM3D-CS, NLR-CS, and LDAMP, are also
robust to bit error and loss, there is a significant PSNR gap from
the proposed scheme. For example, the proposed still obtains

FIGURE 9 Average reconstructed PSNRs of comparison schemes at 0.50
bpp with different bit error probabilities PBSC

FIGURE 10 Average reconstructed PSNRs of comparison schemes at
0.50 bpp with different bit loss probabilities PBEC

29.92 dB reconstructed PSNR, much higher than the LDAMP
with 26.86 dB when PBEC = 50%.

Figure 11 further depicts the reconstructed Parrots at 0.50
bpp compression ratio when PBSC = 0.25% and PBEC = 5%.
One can see that the proposed scheme can recover most of
the visual information of the original images, while traditional
image coding schemes fail to reconstruct the image. One can
also observe that other CS-based schemes are only able to
reconstruct the image with poor visual quality.

7.5 Discussion

7.5.1 Preprocessing influence

To enhance R-D performance, the original image is prepro-
cessed by a denoising network before CS random sampling
process. The adopted denoising network is designed to deal
with images with additive white Gaussian noise (AWGN) from
a certain noise level. Table 9 presents the average reconstructed
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1490 CHEN ET AL.

FIGURE 11 Reconstructed Parrot at 0.50 bpp when PBSC = 0.25% and PBEC = 5%. (a) LIP-BM3D; (b) LIP-NLR; (c) LIP-LDAMP; (d) DNA-ISTANet; (e)
DNA-OPINENet; (f) DNA-AMPNet; (g) JPEG2K; (h) CCSDS-IDC; (i) JPEG; (j) Proposed

TABLE 9 R-D performance of the denoising preprocessing strategy using
the denoising network trained for the different range of noise levels

Range of noise levels

Bpp 0 [0,5] [5,10] [10,15] [15,20] [20,30] [30,40]

0.25 28.05 28.09 28.46 28.82 29.25 29.31 29.41

0.50 31.02 31.09 31.69 32.01 32.16 30.43 30.76

0.75 32.88 33.00 33.61 33.71 33.20 30.57 30.94

1.00 34.38 34.53 34.98 34.84 33.61 30.73 31.14

TABLE 10 Encoding time comparison (s)

Compression ate (bpp)

Methods 0.25 0.50 0.75 1.00

JPEG2K 0.0416 0.0458 0.0465 0.0470

CCSDS-IDC 0.0103 0.0123 0.1390 0.1570

JPEG 0.0032 0.0045 0.0047 0.0051

Proposed w DP 0.0279 0.0283 0.0285 0.0287

Proposed w/o DP 0.0062 0.0064 0.0067 0.0072

PSNRs of the proposed scheme when using the preprocess-
ing denoising network trained for a different range of noise
levels, in which the first column means adding no denoising
preprocessing. For a low compression ratio such as 0.25 bpp,
a preprocessing denoising network for a high noise level can
obtain promising PSNR results, and for a high compression
ratio, a denoising network for a low noise level is a better
option. Underlined values are the reconstruction PSNRs when
using the denoising network for the pre-setted noise level. As
shown in Table 9, denoising preprocessing can enhance the R-D
performance efficiently.

7.5.2 Computing complexity

We compare the encoding time of the proposed scheme with
the other three image compression standards, that is, JPEG,
CCSDS-IDC, and JPEG2K. We disregard other CS-based
image coding schemes in Section 7.2 for their low R-D perfor-
mance. The comparisons are performed on a PC with Intel i5
CPU and Nvidia RTX 2070 GPU. Traditional image compres-
sion standards are carried out in C or C++, and the proposed
scheme is realized in Matlab. Table 10 gives the average run-
ning time over eight test images with different compression
ratios, from which we can see that the encoding time of the pro-
posed scheme without denoising preprocessing (DP) strategy is
shorter than that of CCSDS-IDC. Even after introducing the
DP strategy, the encoding time of the proposed scheme is still
less than that of JPEG2K.

8 CONCLUSION

Here, we proposed an efficient and robust image compression-
encryption scheme. We designed a chaotic system to generate
SBBS matrix and diffusion noise for encryption and utilized
deep-learned prior for plain image reconstruction. Besides, we
adopted a denoising preprocessing strategy to enhance rate-
distortion performance. For compression performance, our
scheme outperforms JPEG, achieving PSNR gains over 3 dB
at 0.25 bpp. For encryption performance, the proposed scheme
has a huge key space. For robust performance, images with
good quality can be obtained at high bit error or loss proba-
bility. In terms of running efficiency, the encoding time of the
proposed method is about 70% of JPEG2K. In summary, the
proposed scheme can compress and encrypt images simulta-
neously, meanwhile achieving high security, low encoding time,
strong robustness, and high rate-distortion performance.
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CHEN ET AL. 1491

Regarding our future work, there exist several aspects for
improvement. First, one can replace DRCAN with a more
powerful deep network technology such as Transformer. Sec-
ond, one can introduce the progressive coding strategy to
further improve R-D performance. Third, one can combine the
proposed cipher within steganography technology to enhance
image safety.
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